
電解/燃料電池単セルの試作から運転評価試験

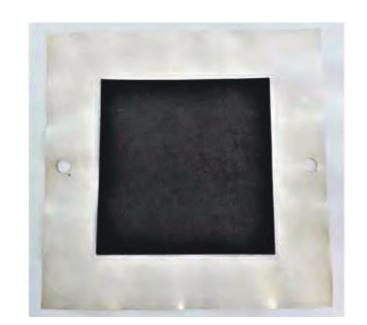
お客様で新規開発された部材を用いてセルを試作し、 電解 / 燃料電池セルとしての特性を評価します

背景·課題

- 固体高分子形の燃料電池及び水電解セルは、電解質膜、電極触媒、 アイオノマー、ガス拡散層、セパレーター等の部材から構成されます。
- それらの部材は個々のお客様において開発が推進されていますが、 そのセルとしての特性を評価する事は大きなハードルであるといえます。

本技術の特徴

新規開発された部材のセル特性を評価します


- 固体高分子形燃料電池の新規開発部材をご支給頂ければ、業界標準プロトコル[※]に従い MEA の試作、セルの組立、セル性能試験、耐久性評価試験を実施し、セルとしての特性をフィードバックします。
- 固体高分子形水電解セルの新規開発部材においても、試作からセル特性の評価が可能です。業界標準以外のご指定プロトコルによる評価試験や、全自動評価装置を用いた 24 時間プログラム運転にも対応可能です。

新規開発部材

電極触媒、アイオノマー 電解質膜、ガス拡散層等

試作

例)MEA (電極面積 25cm²)

セル組立て

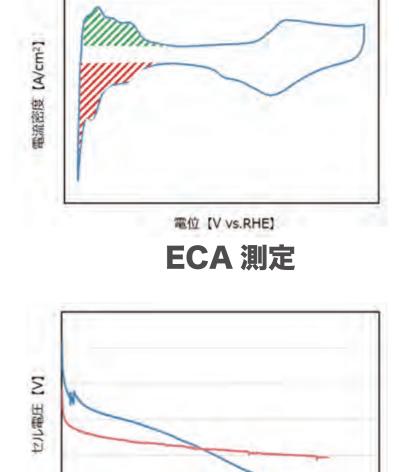
例)JARI 標準セル、水電解セル

性能·耐久性評価

冷凍起動運転対応 発電評価装置

電解評価装置

評価結果をお客様へフィードバックすることで今後の部材開発を支援致します


標準的なセル評価プロトコルとアウトプット例

	試験	目的
性能評価	I-V 測定	セルの基本特性
	酸素還元反応(ORR)活性測定	触媒の質量活性
	電気化学的有効表面積(ECA)測定	触媒有効表面積の解析
	クロスオーバー電流測定	ガスのクロスリーク
耐久性評価	電位サイクル【起動停止】	触媒担体の劣化加速
	電位サイクル【負荷応答】	白金触媒の劣化加速
	開回路電圧(OCV)保持試験	電解質膜の化学的劣化
	湿度サイクル	電解質膜の機械的劣化

[※]NEDO「PEFC セル評価解析プロトコル」(2022 年 3 月版)

DOE 「DOE Fuel Cell Program:Durability Technical Targets and Testing Protocols」(2007年) インピーダンス測定、不純物混入試験、高温運転 (~180℃)、冷凍起動運転 (~-30℃) なども実施致します。

電位サイクル試験【起動停止】

OCV 保持試験